1

Physics 221A: Quantum Mechanics (Fall 2010, UC Berkeley). Instructor: Professor Robert Littlejohn.

FREE
This course includes
Hours of videos

1138 years, 9 months

Units & Quizzes

41

Unlimited Lifetime access
Access on mobile app
Certificate of Completion

This course deals with topics in quantum mechanics: basic assumptions of quantum mechanics; quantum theory of measurement; matrix mechanics; Schroedinger theory; symmetry and invariance principles; theory of angular momentum; stationary state problems; variational principles; time independent perturbation theory; time dependent perturbation theory; theory of scattering. The textbook for this course is Modern Quantum Mechanics by J.J. Sakurai, Revised Edition (Addison-Wesley, New York, 1994)

Course Currilcum

  • Lecture 01 – The Mathematical Formalism of Quantum Mechanics Unlimited
  • Lecture 02 – The Mathematical Formalism of Quantum Mechanics (cont.) Unlimited
  • Lecture 03 – The Mathematical Formalism (cont.), The Postulates of Quantum Mechanics Unlimited
  • Lecture 04 – The Postulates of Quantum Mechanics (cont.), The Density Operator Unlimited
  • Lecture 05 – The Density Operator (cont.), Spatial Degrees of Freedom Unlimited
  • Lecture 06 – Spatial Degrees of Freedom (cont.) Unlimited
  • Lecture 07 – Time Evolution in Quantum Mechanics Unlimited
  • Lecture 08 – Time Evolution in Quantum Mechanics, Topics in One-Dimensional Wave Mechanics Unlimited
  • Lecture 09 – The WKB Method (cont.) Unlimited
  • Lecture 10 – The WKB Method (cont.) Unlimited
  • Lecture 11 – The WKB Method (cont.), Harmonic Oscillators and Coherent States Unlimited
  • Lecture 12 – Harmonic Oscillators and Coherent States (cont.) Unlimited
  • Lecture 13 – Harmonic Oscillators and Coherent States (cont.), The Propagator and … Unlimited
  • Lecture 14 – The Propagator and the Path Integral (cont.) Unlimited
  • Lecture 15 – The Propagator and the Path Integral (cont.) Unlimited
  • Lecture 16 – The Propagator and the Path Integral, Charged Particles in Magnetic Fields Unlimited
  • Lecture 17 – Charged Particles in Magnetic Fields (cont.) Unlimited
  • Lecture 18 – Charged Particles in Magnetic Fields (cont.), Rotations in Ordinary Space Unlimited
  • Lecture 19 – Rotations in Ordinary Space (cont.), Rotations in Quantum Mechanics Unlimited
  • Lecture 20 – Rotations in Quantum Mechanics, and Rotations of Spin 1/2 Systems Unlimited
  • Lecture 21 – Rotations in Quantum Mechanics, and Rotations of Spin 1/2 Systems (cont.) Unlimited
  • Lecture 22 – Representations of the Angular Momentum Operators and Rotations (cont.) Unlimited
  • Lecture 23 – Spins in Magnetic Fields (cont.) Unlimited
  • Lecture 24 – Spins in Magnetic Fields (cont.), Orbital Angular Momentum and … Unlimited
  • Lecture 25 – Orbital Angular Momentum and Spherical Harmonics, Central Force Motion Unlimited
  • Lecture 26 – Central Force Motion (cont.) Unlimited
  • Lecture 27 – Central Force Motion (cont.) Unlimited
  • Lecture 28 – Coupling Spatial and Spin Degrees of Freedom, Coupling of Angular Momenta Unlimited
  • Lecture 29 – Coupling of Angular Momenta (cont.) Unlimited
  • Lecture 30 – Irreducible Tensor Operators and the Wigner-Eckart Theorem Unlimited
  • Lecture 31 – Irreducible Tensor Operators and the Wigner-Eckart Theorem (cont.) Unlimited
  • Lecture 32 – Irreducible Tensor Operators and the Wigner-Eckart Theorem (cont.), Parity Unlimited
  • Lecture 33 – Parity (cont.), Time Reversal Unlimited
  • Lecture 34 – Time Reversal (cont.) Unlimited
  • Lecture 35 – Time Reversal (cont.) Unlimited
  • Lecture 36 – Bound-State Perturbation Theory Unlimited
  • Lecture 37 – The Stark Effect in Hydrogen and Alkali Atoms Unlimited
  • Lecture 38 – The Stark Effect in Hydrogen and Alkali Atoms (cont.) Unlimited
  • Lecture 39 – Fine Structure in Hydrogen and Alkali Atoms (cont.) Unlimited
  • Lecture 40 – The Zeeman Effect in Hydrogen and Alkali Atoms (cont.) Unlimited
  • Lecture 41 – Deuteron Unlimited