Selected Topics in Mathematical Physics. Instructor: Professor V. Balakrishnan, Department of Physics, IIT Madras.

FREE
This course includes
Hours of videos

999 years, 10 months

Units & Quizzes

36

Unlimited Lifetime access
Access on mobile app
Certificate of Completion

A basic course in mathematical methods used in physics. Analytic functions of a complex variable. Calculus of residues, Linear response; dispersion relations. Analytic continuation and the gamma function. Mobius transformations. Multivalued functions; integral representations. Laplace transforms. Fourier transforms. Fundamental Green function for the Laplacian operator. The diffusion equation. Green function for the Helmholtz operator; nonrelativistic scattering. The wave equation. The rotation group and all that. (from nptel.ac.in)

Course Currilcum

  • Lecture 01 – Analytic Functions of a Complex Variable (Part I) Unlimited
  • Lecture 02 – Analytic Functions of a Complex Variable (Part II) Unlimited
  • Lecture 03 – Calculus of Residues (Part I) Unlimited
  • Lecture 04 – Calculus of Residues (Part II) Unlimited
  • Lecture 05 – Calculus of Residues (Part III) Unlimited
  • Lecture 06 – Calculus of Residues (Part IV) Unlimited
  • Lecture 07 – Linear Response; Dispersion Relations (Part I) Unlimited
  • Lecture 08 – Linear Response; Dispersion Relations (Part II) Unlimited
  • Lecture 09 – Analytic Continuation and the Gamma Function (Part I) Unlimited
  • Lecture 10 – Analytic Continuation and the Gamma Function (Part II) Unlimited
  • Lecture 11 – Mobius Transformations (Part I) Unlimited
  • Lecture 12 – Mobius Transformations (Part II) Unlimited
  • Lecture 13 – Mobius Transformations (Part III) Unlimited
  • Lecture 14 – Multivalued Functions; Integral Representations (Part I) Unlimited
  • Lecture 15 – Multivalued Functions; Integral Representations (Part II) Unlimited
  • Lecture 16 – Multivalued Functions; Integral Representations (Part III) Unlimited
  • Lecture 17 – Multivalued Functions; Integral Representations (Part IV) Unlimited
  • Lecture 18 – Laplace Transforms (Part I) Unlimited
  • Lecture 19 – Laplace Transforms (Part II) Unlimited
  • Lecture 20 – Fourier Transforms (Part I) Unlimited
  • Lecture 21 – Fourier Transforms (Part II) Unlimited
  • Lecture 22 – Fourier Transforms (Part III) Unlimited
  • Lecture 23 – Fundamental Green Function for Δ2 (Part I) Unlimited
  • Lecture 24 – Fundamental Green Function for Δ2 (Part II) Unlimited
  • Lecture 25 – The Diffusion Equation (Part I) Unlimited
  • Lecture 26 – The Diffusion Equation (Part II) Unlimited
  • Lecture 27 – The Diffusion Equation (Part III) Unlimited
  • Lecture 28 – The Diffusion Equation (Part IV) Unlimited
  • Lecture 29 – Green Function for (Δ2 + k2); Nonrelativistic Scattering (Part I) Unlimited
  • Lecture 30 – Green Function for (Δ2 + k2); Nonrelativistic Scattering (Part II) Unlimited
  • Lecture 31 – Green Function for (Δ2 + k2); Nonrelativistic Scattering (Part III) Unlimited
  • Lecture 32 – The Wave Equation (Part I) Unlimited
  • Lecture 33 – The Wave Equation (Part II) Unlimited
  • Lecture 34 – The Rotation Group and All That (Part I) Unlimited
  • Lecture 35 – The Rotation Group and All That (Part II) Unlimited
  • Lecture 36 – The Rotation Group and All That (Part III) Unlimited