Selected Topics in Mathematical Physics. Instructor: Professor V. Balakrishnan, Department of Physics, IIT Madras.
FREE
This course includes
Hours of videos
999 years, 10 months
Units & Quizzes
36
Unlimited Lifetime access
Access on mobile app
Certificate of Completion
A basic course in mathematical methods used in physics. Analytic functions of a complex variable. Calculus of residues, Linear response; dispersion relations. Analytic continuation and the gamma function. Mobius transformations. Multivalued functions; integral representations. Laplace transforms. Fourier transforms. Fundamental Green function for the Laplacian operator. The diffusion equation. Green function for the Helmholtz operator; nonrelativistic scattering. The wave equation. The rotation group and all that. (from nptel.ac.in)
Course Currilcum
- Lecture 01 – Analytic Functions of a Complex Variable (Part I) Unlimited
- Lecture 02 – Analytic Functions of a Complex Variable (Part II) Unlimited
- Lecture 03 – Calculus of Residues (Part I) Unlimited
- Lecture 04 – Calculus of Residues (Part II) Unlimited
- Lecture 05 – Calculus of Residues (Part III) Unlimited
- Lecture 06 – Calculus of Residues (Part IV) Unlimited
- Lecture 07 – Linear Response; Dispersion Relations (Part I) Unlimited
- Lecture 08 – Linear Response; Dispersion Relations (Part II) Unlimited
- Lecture 09 – Analytic Continuation and the Gamma Function (Part I) Unlimited
- Lecture 10 – Analytic Continuation and the Gamma Function (Part II) Unlimited
- Lecture 11 – Mobius Transformations (Part I) Unlimited
- Lecture 12 – Mobius Transformations (Part II) Unlimited
- Lecture 13 – Mobius Transformations (Part III) Unlimited
- Lecture 14 – Multivalued Functions; Integral Representations (Part I) Unlimited
- Lecture 15 – Multivalued Functions; Integral Representations (Part II) Unlimited
- Lecture 16 – Multivalued Functions; Integral Representations (Part III) Unlimited
- Lecture 17 – Multivalued Functions; Integral Representations (Part IV) Unlimited
- Lecture 18 – Laplace Transforms (Part I) Unlimited
- Lecture 19 – Laplace Transforms (Part II) Unlimited
- Lecture 20 – Fourier Transforms (Part I) Unlimited
- Lecture 21 – Fourier Transforms (Part II) Unlimited
- Lecture 22 – Fourier Transforms (Part III) Unlimited
- Lecture 23 – Fundamental Green Function for Δ2 (Part I) Unlimited
- Lecture 24 – Fundamental Green Function for Δ2 (Part II) Unlimited
- Lecture 25 – The Diffusion Equation (Part I) Unlimited
- Lecture 26 – The Diffusion Equation (Part II) Unlimited
- Lecture 27 – The Diffusion Equation (Part III) Unlimited
- Lecture 28 – The Diffusion Equation (Part IV) Unlimited
- Lecture 29 – Green Function for (Δ2 + k2); Nonrelativistic Scattering (Part I) Unlimited
- Lecture 30 – Green Function for (Δ2 + k2); Nonrelativistic Scattering (Part II) Unlimited
- Lecture 31 – Green Function for (Δ2 + k2); Nonrelativistic Scattering (Part III) Unlimited
- Lecture 32 – The Wave Equation (Part I) Unlimited
- Lecture 33 – The Wave Equation (Part II) Unlimited
- Lecture 34 – The Rotation Group and All That (Part I) Unlimited
- Lecture 35 – The Rotation Group and All That (Part II) Unlimited
- Lecture 36 – The Rotation Group and All That (Part III) Unlimited