1

Res.6-012 Introduction to Probability (Spring 2018, MIT OCW). Instructors: Prof. John Tsitsiklis and Prof. Patrick Jaillet.

FREE
This course includes
Hours of videos

7415 years, 11 months

Units & Quizzes

267

Unlimited Lifetime access
Access on mobile app
Certificate of Completion

The tools of probability theory, and of the related field of statistical inference, are the keys for being able to analyze and make sense of data. These tools underlie important advances in many fields, from the basic sciences to engineering and management. This resource is a companion site to 6.041SC Probabilistic Systems Analysis and Applied Probability. (from ocw.mit.edu)

Course Currilcum

      • Lecture 01.1 – Overview Unlimited
      • Lecture 01.2 – Sample Space Unlimited
      • Lecture 01.3 – Sample Space Examples Unlimited
      • Lecture 01.4 – Probability Axioms Unlimited
      • Lecture 01.5 – Simple Properties of Probabilities Unlimited
      • Lecture 01.6 – More Properties of Probabilities Unlimited
      • Lecture 01.7 – A Discrete Example Unlimited
      • Lecture 01.8 – A Continuous Example Unlimited
      • Lecture 01.9 – Countable Additivity Unlimited
      • Lecture 01.10 – Interpretations and Uses of Probabilities Unlimited
      • Lecture s01.0 – Overview Unlimited
      • Lecture s01.1 – Sets Unlimited
      • Lecture s01.2 – De Morgan’s Law Unlimited
      • Lecture s01.3 – Sequences and their Limits Unlimited
      • Lecture s01.4 – When does a Sequence Converge? Unlimited
      • Lecture s01.5 – Infinite Series Unlimited
      • Lecture s01.6 – The Geometric Series Unlimited
      • Lecture s01.7 – About the Order of Summation in Series with Multiple Indices Unlimited
      • Lecture s01.8 – Countable and Uncountable Sets Unlimited
      • Lecture s01.9 – Proof that a Set of Real Numbers is Uncountable Unlimited
      • Lecture s01.10 – Bonferroni’s Inequality Unlimited
      • Lecture 02.1 – Overview Unlimited
      • Lecture 02.2 – Conditional Probabilities Unlimited
      • Lecture 02.3 – A Die Roll Example Unlimited
      • Lecture 02.4 – Conditional Probabilities Obey the Same Axioms Unlimited
      • Lecture 02.5 – A Radar Example and Three Basic Tools Unlimited
      • Lecture 02.6 – The Multiplication Rule Unlimited
      • Lecture 02.7 – Total Probability Theorem Unlimited
      • Lecture 02.8 – Bayes’ Rule Unlimited
      • Lecture 03.1 – Overview Unlimited
      • Lecture 03.2 – A Coin Tossing Example Unlimited
      • Lecture 03.3 – Independence of Two Events Unlimited
      • Lecture 03.4 – Independence of Event Complements Unlimited
      • Lecture 03.5 – Conditional Independence Unlimited
      • Lecture 03.6 – Independence vs Conditional Independence Unlimited
      • Lecture 03.7 – Independence of a Collection of Events Unlimited
      • Lecture 03.8 – Independence vs Pairwise Independence Unlimited
      • Lecture 03.9 – Reliability Unlimited
      • Lecture 03.10 – The King’s Sibling Unlimited
      • Lecture 04.1 – Overview Unlimited
      • Lecture 04.2 – The Counting Principle Unlimited
      • Lecture 04.3 – Die Roll Example Unlimited
      • Lecture 04.4 – Combinations Unlimited
      • Lecture 04.5 – Binomial Probabilities Unlimited
      • Lecture 04.6 – A Coin Tossing Example Unlimited
      • Lecture 04.7 – Partitions Unlimited
      • Lecture 04.8 – Each Person Gets an Ace Unlimited
      • Lecture 04.9 – Multinomial Probabilities Unlimited
      • Lecture 05.1 – Overview Unlimited
      • Lecture 05.2 – Definition of Random Variables Unlimited
      • Lecture 05.3 – Probability Mass Functions Unlimited
      • Lecture 05.4 – Bernoulli and Indicator Random Variables Unlimited
      • Lecture 05.5 – Uniform Random Variables Unlimited
      • Lecture 05.6 – Binomial Random Variables Unlimited
      • Lecture 05.7 – Geometric Random Variables Unlimited
      • Lecture 05.8 – Expectation Unlimited
      • Lecture 05.9 – Elementary Properties of Expectation Unlimited
      • Lecture 05.10 – The Expected Value Rule Unlimited
      • Lecture 05.11 – Linearity of Expectations Unlimited
      • Lecture 05.12 – Supplement: Functions Unlimited
      • Lecture 06.1 – Overview Unlimited
      • Lecture 06.2 – Variance Unlimited
      • Lecture 06.3 – The Variance of the Bernoulli and the Uniform Unlimited
      • Lecture 06.4 – Conditional PMFs and Expectations Given an Event Unlimited
      • Lecture 06.5 – Total Expectation Theorem Unlimited
      • Lecture 06.6 – Geometric Probability Mass Function (PMF) Memorylessness and Expectation Unlimited
      • Lecture 06.7 – Joint Probability Mass Functions (PMFs) and the Expected Value Rule Unlimited
      • Lecture 06.8 – Linearity of Expectations and the Mean of the Binomial Unlimited
      • Lecture 07.1 – Overview Unlimited
      • Lecture 07.2 – Conditional Probability Mass Functions (PMFs) Unlimited
      • Lecture 07.3 – Conditional Expectation and the Total Expectation Theorem Unlimited
      • Lecture 07.4 – Independence of Random Variables Unlimited
      • Lecture 07.5 – Example Unlimited
      • Lecture 07.6 – Independence and Expectations Unlimited
      • Lecture 07.7 – Independence, Variances and the Binomial Variance Unlimited
      • Lecture 07.8 – The Hat Problem Unlimited
      • Lecture 07.9 – The Inclusion-Exclusion Formula Unlimited
      • Lecture 07.10 – The Variance of the Geometric Unlimited
      • Lecture 07.11 – The Independence of Random Variables vs Independence of Events Unlimited
      • Lecture 08.1 – Overview Unlimited
      • Lecture 08.2 – Probability Density Functions Unlimited
      • Lecture 08.3 – Uniform and Piecewise Constant PDFs Unlimited
      • Lecture 08.4 – Means and Variances Unlimited
      • Lecture 08.5 – Mean and Variance of the Uniform Unlimited
      • Lecture 08.6 – Exponential Random Variables Unlimited
      • Lecture 08.7 – Cumulative Distribution Functions Unlimited
      • Lecture 08.8 – Normal Random Variables Unlimited
      • Lecture 08.9 – Calculation of Normal Probabilities Unlimited
      • Lecture 09.1 – Overview Unlimited
      • Lecture 09.2 – Conditioning a Continuous Random Variable on an Event Unlimited
      • Lecture 09.3 – Conditioning Example Unlimited
      • Lecture 09.4 – Memorylessness of the Exponential Probability Density Function (PDF) Unlimited
      • Lecture 09.5 – Total Probability and Expectation Theorems Unlimited
      • Lecture 09.6 – Mixed Random Variables Unlimited
      • Lecture 09.7 – Joint PDFs Unlimited
      • Lecture 09.8 – From the Joint to the Marginal Unlimited
      • Lecture 09.9 – Continuous Analogs of Various Properties Unlimited
      • Lecture 09.10 – Joint CDFs Unlimited
      • Lecture 09.11 – Buffon’s Needle and Monte Carlo Simulation Unlimited
      • Lecture 10.1 – Overview Unlimited
      • Lecture 10.2 – Conditional Probability Density Functions (PDFs) Unlimited
      • Lecture 10.3 – Comments on Conditional PDFs Unlimited
      • Lecture 10.4 – Total Probability and Total Expectation Theorems Unlimited
      • Lecture 10.5 – Independence Unlimited
      • Lecture 10.6 – Stick-Breaking Example Unlimited
      • Lecture 10.7 – Independent Normals Unlimited
      • Lecture 10.8 – Bayes Rule Variations Unlimited
      • Lecture 10.9 – Mixed Bayes Rule Unlimited
      • Lecture 10.10 – Detection of a Binary Signal Unlimited
      • Lecture 10.11 – Inference of the Bias of a Coin Unlimited
      • Lecture 11.1 – Overview Unlimited
      • Lecture 11.2 – The PMF of a Function of a Discrete Random Variable Unlimited
      • Lecture 11.3 – A Linear Function of a Continuous Random Variable Unlimited
      • Lecture 11.4 – A Linear Function of a Normal Random Variable Unlimited
      • Lecture 11.5 – The PDF of a General Function Unlimited
      • Lecture 11.6 – The Monotonic Case Unlimited
      • Lecture 11.7 – The Intuition for the Monotonic Case Unlimited
      • Lecture 11.8 – A Nonmonotonic Example Unlimited
      • Lecture 11.9 – The PDF of a Function of Multiple Random Variables Unlimited
      • Lecture 11.10 – Simulation Unlimited
      • Lecture 12.1 – Overview Unlimited
      • Lecture 12.2 – The Sum of Independent Discrete Random Variables Unlimited
      • Lecture 12.3 – The Sum of Independent Continuous Random Variables Unlimited
      • Lecture 12.4 – The Sum of Independent Normal Random Variables Unlimited
      • Lecture 12.5 – Covariance Unlimited
      • Lecture 12.6 – Covariance Properties Unlimited
      • Lecture 12.7 – The Variance of the Sum of Random Variables Unlimited
      • Lecture 12.8 – The Correlation Coefficient Unlimited
      • Lecture 12.9 – Proof of Key Properties of the Correlation Coefficient Unlimited
      • Lecture 12.10 – Interpreting the Correlation Coefficient Unlimited
      • Lecture 12.11 – Correlations Matter Unlimited
      • Lecture 13.1 – Overview Unlimited
      • Lecture 13.2 – Conditional Expectation as a Random Variable Unlimited
      • Lecture 13.3 – The Law of Iterated Expectations Unlimited
      • Lecture 13.4 – Stick-Breaking Revisited Unlimited
      • Lecture 13.5 – Forecast Revisions Unlimited
      • Lecture 13.6 – The Conditional Variance Unlimited
      • Lecture 13.7 – Derivation of the Law of Total Variance Unlimited
      • Lecture 13.8 – A Simple Example Unlimited
      • Lecture 13.9 – Section Means and Variances Unlimited
      • Lecture 13.10 – Mean of the Sum of a Random Number of Random Variables Unlimited
      • Lecture 13.11 – Variance of the Sum of a Random Number of Random Variables Unlimited
      • Lecture 13.12 – Conditional Expectation Properties Unlimited
      • Lecture 14.1 – Overview Unlimited
      • Lecture 14.2 – Overview of Some Application Domains Unlimited
      • Lecture 14.3 – Types of Inference Problems Unlimited
      • Lecture 14.4 – The Bayesian Inference Framework Unlimited
      • Lecture 14.5 – Discrete Parameter, Discrete Observation Unlimited
      • Lecture 14.6 – Discrete Parameter, Continuous Observation Unlimited
      • Lecture 14.7 – Continuous Parameter, Continuous Observation Unlimited
      • Lecture 14.8 – Inferring the Unknown Bias of a Coin and the Beta Distribution Unlimited
      • Lecture 14.9 – Inferring the Unknown Bias of a Coin – Point Estimates Unlimited
      • Lecture 14.10 – Summary Unlimited
      • Lecture 14.11 – The Beta Formula Unlimited
      • Lecture 15.1 – Overview Unlimited
      • Lecture 15.2 – Recognizing Normal PDFs Unlimited
      • Lecture 15.3 – Estimating a Normal Random Variable in the Presence of Additive Noise Unlimited
      • Lecture 15.4 – The Case of Multiple Observations Unlimited
      • Lecture 15.5 – The Mean Squared Error Unlimited
      • Lecture 15.6 – Multiple Parameters; Trajectory Estimation Unlimited
      • Lecture 15.7 – Linear Normal Models Unlimited
      • Lecture 15.8 – Trajectory Estimation Illustration Unlimited
      • Lecture 16.1 – Overview Unlimited
      • Lecture 16.2 – LMS Estimation in the Absence of Observations Unlimited
      • Lecture 16.3 – LMS Estimation of One Random Variable based on Another Unlimited
      • Lecture 16.4 – LMS Performance Evaluation Unlimited
      • Lecture 16.5 – Example: The LMS Estimate Unlimited
      • Lecture 16.6 – Example: LMS Performance Evaluation Unlimited
      • Lecture 16.7 – LMS Estimation with Multiple Observations or Unknowns Unlimited
      • Lecture 16.8 – Properties of the LMS Estimation Error Unlimited
      • Lecture 17.1 – Overview Unlimited
      • Lecture 17.2 – Linear Least Mean Squares Formulation Unlimited
      • Lecture 17.3 – Solution to the LLMS Problem Unlimited
      • Lecture 17.4 – Remarks on the LLMS Solution and on the Error Variance Unlimited
      • Lecture 17.5 – LLMS Example Unlimited
      • Lecture 17.6 – LLMS for Inferring the Parameter of a Coin Unlimited
      • Lecture 17.7 – LLMS with Multiple Observations Unlimited
      • Lecture 17.8 – The Simplest LLMS Example with Multiple Observations Unlimited
      • Lecture 17.9 – The Representation of the Data Matters in LLMS Unlimited
      • Lecture 18.1 – Overview Unlimited
      • Lecture 18.2 – The Markov Inequality Unlimited
      • Lecture 18.3 – The Chebyshev Inequality Unlimited
      • Lecture 18.4 – The Weak Law of Large Numbers Unlimited
      • Lecture 18.5 – Polling Unlimited
      • Lecture 18.6 – Convergence in Probability Unlimited
      • Lecture 18.7 – Convergence in Probability Examples Unlimited
      • Lecture 18.8 – Related Topics Unlimited
      • Lecture 18.9 – Convergence in Probability of the Sum of Two Random Variables Unlimited
      • Lecture 18.10 – Jensen’s Inequality Unlimited
      • Lecture 18.11 – Hoeffding’s Inequality Unlimited
      • Lecture 19.1 – Overview Unlimited
      • Lecture 19.2 – The Central Limit Theorem Unlimited
      • Lecture 19.3 – Discussion of the Central Limit Theorem Unlimited
      • Lecture 19.4 – Illustration of the Central Limit Theorem Unlimited
      • Lecture 19.5 – CLT Examples Unlimited
      • Lecture 19.6 – Normal Approximation to the Binomial Unlimited
      • Lecture 19.7 – Polling Revisited Unlimited
      • Lecture 20.1 – Overview Unlimited
      • Lecture 20.2 – Overview of the Classical Statistical Framework Unlimited
      • Lecture 20.3 – The Sample Mean and Some Terminology Unlimited
      • Lecture 20.4 – On the Mean Squared Error of an Estimator Unlimited
      • Lecture 20.5 – Confidence Intervals Unlimited
      • Lecture 20.6 – Confidence Intervals for the Estimation of the Mean Unlimited
      • Lecture 20.7 – Confidence Intervals for the Mean, When the Variance is Unknown Unlimited
      • Lecture 20.8 – Other Natural Estimators Unlimited
      • Lecture 20.9 – Maximum Likelihood Estimation Unlimited
      • Lecture 20.10 – Maximum Likelihood Estimation Examples Unlimited
      • Lecture 21.1 – Overview Unlimited
      • Lecture 21.2 – The Bernoulli Process Unlimited
      • Lecture 21.3 – Stochastic Processes Unlimited
      • Lecture 21.4 – Review of Known Properties of the Bernoulli Process Unlimited
      • Lecture 21.5 – The Fresh Start Property Unlimited
      • Lecture 21.6 – Example: The Distribution of a Busy Period Unlimited
      • Lecture 21.7 – The Time of the K-th Arrival Unlimited
      • Lecture 21.8 – Merging of Bernoulli Processes Unlimited
      • Lecture 21.9 – Splitting a Bernoulli Process Unlimited
      • Lecture 21.10 – The Poisson Approximation to the Binomial Unlimited
      • Lecture 22.1 – Overview Unlimited
      • Lecture 22.2 – Definition of the Poisson Process Unlimited
      • Lecture 22.3 – Applications of the Poisson Process Unlimited
      • Lecture 22.4 – The Poisson PMF for the Number of Arrivals Unlimited
      • Lecture 22.5 – The Mean and Variance of the Number of Arrivals Unlimited
      • Lecture 22.6 – A Simple Example Unlimited
      • Lecture 22.7 – Time of the K-th Arrival Unlimited
      • Lecture 22.8 – The Fresh Start Property and its Implications Unlimited
      • Lecture 22.9 – Summary of Results Unlimited
      • Lecture 22.10 – An Example Unlimited
      • Lecture 23.1 – Overview Unlimited
      • Lecture 23.2 – The Sum of Independent Poisson Random Variables Unlimited
      • Lecture 23.3 – Merging Independent Poisson Processes Unlimited
      • Lecture 23.4 – Where is an Arrival of the Merged Process Coming From? Unlimited
      • Lecture 23.5 – The Time until the First (or Last) Lightbulb Burns Out Unlimited
      • Lecture 23.6 – Splitting a Poisson Process Unlimited
      • Lecture 23.7 – Random Incidence in the Poisson Process Unlimited
      • Lecture 23.8 – Random Incidence in a Non-Poisson Process Unlimited
      • Lecture 23.9 – Different Sampling Methods can Give Different Results Unlimited
      • Lecture 23.10 – Poisson vs Normal Approximations to the Binomial Unlimited
      • Lecture 23.11 – Poisson Arrivals during an Exponential Interval Unlimited
      • Lecture 24.1 – Overview Unlimited
      • Lecture 24.2 – Introduction to Markov Processes Unlimited
      • Lecture 24.3 – Checkout Counter Example Unlimited
      • Lecture 24.4 – Discrete-Time Finite-State Markov Chains Unlimited
      • Lecture 24.5 – N-Step Transition Probabilities Unlimited
      • Lecture 24.5 – N-Step Transition Probabilities Unlimited
      • Lecture 24.6 – A Numerical Example – Part I Unlimited
      • Lecture 24.7 – Generic Convergence Questions Unlimited
      • Lecture 24.8 – Recurrent and Transient States Unlimited
      • Lecture 25.1 – Brief Introduction Unlimited
      • Lecture 25.2 – Overview Unlimited
      • Lecture 25.3 – Markov Chain Review Unlimited
      • Lecture 25.4 – The Probability of a Path Unlimited
      • Lecture 25.5 – Recurrent and Transient States: Review Unlimited
      • Lecture 25.6 – Periodic States Unlimited
      • Lecture 25.7 – Steady-State Probabilities and Convergence Unlimited
      • Lecture 25.8 – A Numerical Example – Part II Unlimited
      • Lecture 25.9 – Visit Frequency Interpretation of Steady-State Probabilities Unlimited
      • Lecture 25.10 – Birth-Death Processes, Part I Unlimited
      • Lecture 25.11 – Birth-Death Processes, Part II Unlimited
      • Lecture 26.1 – Brief Introduction Unlimited
      • Lecture 26.2 – Overview Unlimited
      • Lecture 26.3 – Review of Steady-State Behavior Unlimited
      • Lecture 26.4 – A Numerical Example – Part III Unlimited
      • Lecture 26.5 – Design of a Phone System Unlimited
      • Lecture 26.6 – Absorption Probabilities Unlimited
      • Lecture 26.7 – Expected Time to Absorption Unlimited
      • Lecture 26.8 – Mean First Passage Time Unlimited
      • Lecture 26.9 – Gambler’s Ruin Unlimited